Chem. Ber. 113, 728-738 (1980)

Beiträge zur Chemie des Bors, CV¹⁾

(N-Lithiomethylamino)dimethylboran als Reagens zur Darstellung N-funktioneller Aminodimethylborane

Hermann Fußstetter, Günter Kopietz und Heinrich Nöth*

Institut für Anorganische Chemie der Universität München, Meiserstr. 1, D-8000 München 2

Eingegangen am 18. Mai 1979

Das Reagens $(CH_3)_2B - N(CH_3)Li$ (1) ermöglicht die Synthese zahlreicher Borylaminoelement-Verbindungen wie $(CH_3)_2B - NCH_3 - BCH_3 - N(CH_3)_2$, $(CH_3)_2Si[NCH_3 - B(CH_3)_2]_2$, $(CH_3)_2B - NCH_3 - Si(CH_3)_2 - NCH_3 - Si(CH_3)_2B - NCH_3 - P(CH_3)_2$ oder $(CH_3)_2B - NCH_3 - As(CH_3)_2$. Mit mehrfunktionellen Elementhalogeniden wird die Produktpalette komplexer, was auch auf Cyclokondensation der längerkettigen Verbindungen zurückzuführen ist.

Contributions to the Chemistry of Boron, CV¹⁾ (*N*-Lithiomethylamino)dimethylborane as a Reagent for the Preparation of *N*-Functional Aminodimethylboranes

The reagent $(CH_{3})_2B - N(CH_3)Li$ (1) allows the synthesis of many borylaminoelement compounds such as $(CH_3)_2B - NCH_3 - BCH_3 - N(CH_3)_2$, $(CH_3)_2Si[NCH_3 - B(CH_3)_2]_2$, $(CH_3)_2B - NCH_3 - Si(CH_3)_2 - NCH_3 - Si(CH_3)_2B - NCH_3 - P(CH_3)_2 - NCH_3 - Si(CH_3)_2B - NCH_3 - NCH_3 - P(CH_3)_2 - NCH_3 - Si(CH_3)_2B - NCH_3 - NCH_3 - P(CH_3)_2 - NCH_3 - Si(CH_3)_2B - Si(CH_3)_2B$

Aminoborane sind schwache Nucleophile. *N*-Metallierung erhöht ihre Elektronendichte am Stickstoff²). Dadurch steigt ihr nucleophiler Charakter beträchtlich an, und diese Verbindungen sollten daher geeignete Agenzien³) zur Darstellung *N*-funktioneller Aminoborane, d.h. von Borylaminoelement-Verbindungen sein. Verbindungen dieses Typs wurden bisher hauptsächlich durch Silazan-Spaltung mit Borhalogeniden⁴) nach (1a) oder durch Umsetzung von Elementamiden mit Bor-Verbindungen⁵) nach (1b) erhalten. Die Anwendungsbreite dieser Methoden wird begrenzt durch die geringe Basizität und Nucleophilie bestimmter SiN-Verbindungen oder die Instabilität der Elementamide. Eine Erweiterung und Ergänzung bringt die Methode (1c), die im Bereich der Aminoborane noch kaum eingesetzt wurde⁶), wohl aber bei heterocyclischen BN-Verbindungen beschränkte Anwendung fand⁷). Über die Bedingungen zur Darstellung reiner *N*-Lithioaminoborane berichteten wir erst vor kurzem³; nachfolgend beschreiben wir ihre Verwendung zum Aufbau von Borylamino-Verbindungen des Bors, Siliciums, Phosphors und Arsens.

$$R_{2}BX + R_{3}Si - NR' - E$$

$$-R_{3}SiX \downarrow (a) \qquad (1)$$

$$Li - NR' - E + R_{2}BX \xrightarrow{(b)} R_{2}B - NR' - E \xleftarrow{(c)} R_{2}B - NR' - Li + EX$$

Borylaminoborane

Der systematische Aufbau von Aminoboran-Ketten scheiterte bisher vor allem daran, daß die Verbindungen mit zunehmender Kettenlänge immer instabiler werden⁸⁾. Zudem sind von den bisher 12 bekannten BN-Ketten mit mehr als drei Gliedern nur vier voll charakterisiert. Als bislang beste Methode zur gezielten Synthese von Aminoboran-Ketten kann die Silazan-Spaltung gelten⁴⁾. Wir können nun zeigen, daß Umsetzungen nach (1c) ebenfalls sehr gute Resultate liefern.

 $(CH_3)_2B - N(CH_3)Li$ (1) reagiert mit Dimethylborbromid zum Diborylamin 2, das in 43 % Ausbeute isoliert wurde und das sich unzersetzt bei Normaldruck destillieren läßt⁹, d.h. es ist in reinem Zustand thermisch stabiler als bisher angenommen. Über Silazan-Spaltung hergestellt¹⁰, läßt sich Borazin-Bildung nicht vermeiden. Analog setzt sich 1 mit (Dimethylamino)methylborchlorid zum permethylierten Borylamino-(amino)boran 3 um. Mit der Synthese von 3 ist das letzte fehlende Isomere der Reihe 3-5 mit B₂N₂-Skelett charakterisiert; damit wird ein Vergleich ihrer physikalischen Eigenschaften, Struktur und Bindungsverhältnisse möglich¹¹).

Eine siebengliedrige BN-Kette 7 erwarteten wir bei der Einwirkung von 1 auf das Bis(brommethylboryl)amin 6 gemäß (3). In der Reaktionslösung fanden sich aber neben den NMR-Signalen von 7 auch die von Trimethylboran. Dieses könnte durch Kondensation gemäß (4) entstanden sein, und tatsächlich ließ sich in 47proz. Ausbeute das Pentamethyl(trimethylsilyl)borazin 8 isolieren. Jedoch entstanden dabei nicht unerhebliche Mengen an Pentamethyldiborylamin 2. Danach muß entweder die Umsetzung von 1 mit 6 sehr viel komplexer ablaufen oder auch die Zersetzung von 7, die an die Zersetzung elektronenarmer Tris(borylamino)borane anklingt¹²⁾.

Der Einsatz von 1 ermöglicht sicher die Synthese zahlreicher weiterer neuer BN-Systeme. Variation der Substituenten am N-Atom des metallierten Aminoborans³⁾ zeigt weitere Möglichkeiten auf. Die Umsetzung nach (5) ergibt in sehr guter Ausbeute das asymmetrisch substituierte Diborylamin 11, das aufgrund seiner raumerfüllenden Gruppen zwei orthogonale BN- π -Systeme besitzt.

Borylaminosilane

Borylaminosilane sind in großer Vielfalt bekannt¹³⁾. Daher wurde, wenn auch noch nicht systematisch, geprüft, ob durch Verwendung von Lithium-borylamiden neuartige Verbindungen dieses Typs zugänglich bzw. neue Reaktionsweisen zu erschließen sind.

Ausgehend von 1 und den entsprechenden Halogensilanen ließen sich die Borylaminosilane 12 - 14 mit Ausbeuten von 20 bis 74% isolieren.

Die Umsetzung nach (6a) mit $1 \cdot \text{TMEDA}^{3)}$ liefert 12. Nach (6b) entsteht die bis 80°C völlig stabile BNSi-Fünferkette 14, die zwar auch über den Weg (6c) zugänglich ist, isolierbar allerdings in der wesentlich schlechteren Ausbeute von nur 20%. Im allgemeinen neigen Verbindungen des Typs $\text{E}[\text{NR} - \text{B}(\text{CH}_3)_2]_2$ zur intramolekularen Cyclokondensation unter (CH₃)₃B-Abspaltung bei sperrigen Gruppen R^{5a}. Diese scheint bei kleinem R (= CH₃) nicht mehr bevorzugt, sondern intermolekular abzulaufen. 14 ist immerhin bei 80°C noch stabil.

Wesentlich komplexer verlaufen die Umsetzungen nach (6d) bis (6f). Wirken 2 mol 1 bei -30 bis 0°C 3 h lang auf 1 mol CH₃N[Si(CH₃)₂Br]₂ ein, so lieferte die Aufarbeitung hauptsächlich 13, das mit 8 mol-% 15 verunreinigt war. Außerdem wurden im Reaktionsgemisch NMR-spektroskopisch noch Ausgangsverbindungen nachgewiesen. Verlängert man die Reaktionszeit auf 3 Tage, dann waren 13, 15, 17, Hexamethylborazin, 2 sowie Nonamethylcyclotrisilazan nachweisbar.

Hauptprodukte der Einwirkung von 1 auf 13 (1:1) bei -40° C sind nach NMR-Analyse 2 und 15. Wahrscheinlich entsteht zunächst die BNSi-Kette 16, die nach (7) entweder intramolekular unter Ringschluß zu 15 führt, oder intermolekular nach (7b) zu verschiedenen Cyclosilazanen und Oligomeren. Hieraus ist ersichtlich, daß Reaktionen von 1 mit mehrfunktionellen Silanen unübersichtlicher werden und eine ganze Produktpalette liefern, die wegen ihrer z. T. noch beträchtlichen Reaktivität Trennprobleme bietet.

Borylaminophosphane und -arsane

Das bekannte Borylaminophosphan 18^{5b} läßt sich nach (8a) in 22% Ausbeute gewinnen. Diese Verbindung ist aus zwei Gründen interessant: i) sie neigt zur Bildung eines Sechsring-Dimeren, ii) man beobachtet mit ${}^{4}J({}^{31}\text{PNBCH})$ eine long-range-Kopplung^{5b}. Mit dem nach (8b) ohne Nebenprodukte anfallenden Borylaminoarsan 19 wurde der einfachste Vertreter dieser noch wenig untersuchten Verbindungsklasse¹⁴) charakterisiert. 19 neigt im Gegensatz zu 18 nicht zur Dimerisierung.

$$(CH_3)_2 B-NCH_3-P(CH_3)_2 \xleftarrow{(CH_3)_2 PCI}{(a)} 1 \xrightarrow{(CH_3)_2 ASCI} (CH_3)_2 B-NCH_3-As(CH_3)_2$$
 (8)
18 19

Dies ist insofern etwas überraschend als $(CH_3)_2BAs(CH_3)_2$ trimerisiert¹⁴, also sowohl von den sterischen wie basischen Voraussetzungen her eine Assoziation von **19** zu erwarten wäre. Folglich muß die durch die BN- π -Bindung reduzierte Lewis-Acidität der $(CH_3)_2B$ -Gruppe für das Ausbleiben der Assoziation verantwortlich sein.

Spektroskopische Untersuchungen

Die Kernresonanzspektren bestätigten die Konstitution, die wir für die neuen Verbindungen annehmen. Tab. 1 enthält alle relevanten Daten.

In Übereinstimmung mit dem ¹H-NMR-Spektrum¹⁰) beobachtet man im Pentamethyldiborylamin 2 für die $(CH_3)_2$ B-Gruppe nur ein einziges ¹³C-NMR-Signal. Die Rotation um die BN-Bindung ist bei Raumtemperatur als Folge der schwachen π -Bindung in der Zeitskala des NMR-Experiments ungehindert. Als Folge davon liegen die NMR-Signale von ¹¹B und ¹⁴N für Verbindungen mit C₂BN-Gerüst¹⁵) bei sehr tiefem Feld. Die relativ geringe Elektronendichte am Bor wirkt sich auch in einer beträchtlichen Tieffeldverschiebung des ¹³C-NMR-Signals aus.

		$\delta^1 H$		$\delta^{11}B$	$\delta^{13}\mathrm{C}(J(^{13}\mathrm{CH}))$
N(CH ₃) ₂	CH ₃ B 0.25	CH₃N 2.75	(CH ₃) _n E	44.0	4.0br.
$nCH_3 - B(CH_3)_2$	0.56	2.88		58.0	a: 10.9 b: 36.5
13] ^h 13	0.38 br.	g: 2.48 h: 3.10 (CH ₂ N)	0.15	e: 29.6 b: 52.5	d: 2.2q (119±2) a: 9.0br. g: 32.9q (132±2) h: 49.9t (138±2)
$\overset{\circ}{\mathrm{NCH}}_{3}^{\mathrm{d}} = \overset{\circ}{\mathrm{BCH}}_{3}^{\mathrm{c}} = \overset{e}{\mathrm{N(CH}}_{3})_{2}$	a: 0.17 a: 0.30 f: 0.33	h: 2.58 h: 2.62 d: 2.72	_	e: 38.3 b: 45.9	f: 0.5br. a: 5.1br. d: 34.5q (134.4±2.4) h: 39.3q (134.0±2.4) h: 37.7
$NCH_3 - Si(CH_3)_3$	0.35 0.37	2.67	0.19	51.2	
$CH_3 - Si(CH_3)_2Br$ $CH_3)_2Br$	0.53	2.76	0.71	53.1	
$\operatorname{NCH}_{b}_{b} - \operatorname{B}(\operatorname{CH}_{3})_{2}$	0.44	a: 2.55 b: 2.72	d: 0.32 c: 0.61	52.0	
NĊH ₃] ₂ Si(ĊH ₃) ₂	0.37	2.72	0.31	52.2	c: $2.3q (120 \pm 2.4)$ a: 7.9 br. b: $33.7q (136.7 \pm 2.4)$
$NCH_3 - P(CH_3)_2$	0.47^{16}	2.74d	1.14d	51.7	······································
$\overset{b}{\mathrm{CH}}_{3}$ – As($\overset{b}{\mathrm{CH}}_{3}$) ₂	0.33 0.48	2.78	1.06	50.2	a: 7.1 br. c: 11.9q (134.3 ± 2.4) b: 31.9q (134.3 ± 2.4)

ab. 1. Chemische Verschiebungen (δ^1 H, δ^{11} B, δ^{13} C, δ^{14} N, δ^{29} Si) und Kopplungskonstanten (in Hz) einer Reihe von ino-Verbindungen. Standards: iTMS für ¹H, ¹³C und ²⁹Si; ext. BF₃ · O(C₂H₅)₂ und NaNO₃ für ¹¹B bzw. ¹⁴N. Pos 5-Werte feldab vom Standard. Alle Verbindungen wurden in CH₂Cl₂-Lösung gemessen, falls nichts anderes angeg

Dieser Effekt wird besonders deutlich, wenn man die δ^{13} C-Werte der Reihe B(CH₃)₃, **2**, **3**, (CH₃)₂B – N(CH₃)₂ und CH₃B[N(CH₃)₂]₂ betrachtet: 14.8¹⁶, 10.9, 5.1/0.5, 4.0¹⁶), 1.0¹⁶). In der B₂N₂-Kette **3** sind sowohl ¹³C wie ¹¹B der (CH₃)₂B-Gruppe stärker als in **2** abgeschirmt. Im Gegensatz dazu gilt für ¹¹B der CH₃B-Gruppe in der B₂N₂-Kette **3**, eine — erwartungsgemäß im Vergleich zu CH₃B[N(CH₃)₂]₂ (δ^{11} B 33.7) — geringere Abschirmung, aber das zugehörige ¹³C-NMR-Signal liegt bei etwas höherem Feld (0.5) als bei der Vergleichsverbindung. Im ¹⁴N-NMR-Spektrum von **3** beobachtet man zwei deutlich getrennte Signale mit etwa gleichen Linienbreiten (≈ 200 Hz). Alle Daten lassen sich vereinbaren mit zwei weitgehend *lokalisierten* BN-Bindungen. Dafür spricht auch, daß in **3** für die Protonen der (CH₃)₂B-Gruppe zwei Signale bei Raumtemperatur beobachtbar sind, aber auch zwei Signale für die Protonen und ¹³C-Atome der Dimethylamino-Gruppe neben den entsprechenden Signalen der CH₃N-Gruppe. Dementsprechend sind beide terminale BN-Bindungen in **3** rotationsgehindert¹⁷⁾. Die Breite des ¹³C – B-Signals verhindert die getrennte Beobachtung zweier ¹³C-Signale, die aufgrund des ¹H-NMR-Spektrums zu erwarten wären.

Ebensowenig läßt sich aus den NMR-Spektren des Diborylamins 11 eine BN-Konjugation ableiten. Wegen der sperrigen (CH₃)₃Si-Gruppe wäre ein planares $C_2B - NSi - BN_2$ -Gerüst ohnehin nicht möglich. Im Vergleich mit 3 muß die Verdrillung um die zentrale BN-Bindung stärker als dort sein. Dies belegen die bei tieferem Feld liegenden δ^{11} B und δ^{13} C-Werte. Die Tieffeldverschiebung rührt u.a. von der $(CH_3)_3$ Si-Substitution am Stickstoff her, die ebenfalls π -Elektronendichte vom Stickstoff beansprucht, allerdings nicht im gleichen Maße wie eine (CH₃)₂B-Gruppe. Den Trend der NMR-Daten erkennt man u.a. aus dem Vergleich von (CH₃)₂B-N(CH₃)₂, 2, 11 und 12. Die Analogie zwischen 11 und 12 geht auch aus den nahezu gleich abgeschirmten ¹⁴N-Kernen der (CH₃)₂B-N-Einheit hervor. Allerdings beobachtet man in 11 im Gegensatz zu 12 (und 3) keine Aufspaltung des¹H-NMR-Signals der Dimethylboryl-Gruppe mehr; die breite Signalform spricht aber dafür, daß bei der Meßtemperatur etwa die Koaleszenztemperatur liegt. Aus den NMR-Daten folgt auch eine große strukturelle Analogie zwischen 12 und 14. Die Tieffeldverschiebung des ²⁹Si-Signals in 14 erklärt sich zwanglos aus der Gegenwart einer zweiten (Dimethylboryl)methylamino-Gruppe. Dementsprechend liegen die ¹H-Signale der (CH₃)₂Si- und CH₃-Gruppe bei tieferem Feld. Das ¹³C-Signal der *B*-ständigen C-Atome ist wegen des Quadrupols des ¹¹B-Kerns breit. Alle anderen ¹³C-Signale zeigen im protonengekoppelten Spektrum, wie alle vorstehend diskutierten, die erwarteten Multiplizitäten.

Die NMR-Spektren von 18, dem [(Dimethylboryl)methylamino]dimethylphosphan, wurden bereits ausführlich diskutier1⁽²⁾. Die Substitution von Phosphor durch Arsen führt zu einer geringfügig stärkeren Abschirmung des Bors. Ob dies Folge der kleineren Elektronegativität des Arsens oder dessen geringeren Tendenz zur (dp) π -Bindung ist, läßt sich nicht entscheiden, und zwar auch nicht aufgrund der stärkeren Abschirmung des Stickstoffs. Im Einklang mit der verstärkten Abschirmung des Bors relativ zu 14 steht die erhöhte Abschirmung der ¹³C-Kerne für die (CH₃)₂Bund die CH₃N-Gruppe. Jedoch sind die Protonen der CH₃N-Gruppe in 19 geringer abgeschirmt als in der P-Verbindung oder in 12, ein Befund, der sich ohne genauere Kenntnis der Konformation von 19 (relativ zu 18, 14 und 12) nicht einfach interpretieren läßt. Für 19 ergeben sich in Lösung aus den NMR-Spektren keine Hinweise für eine Assoziation.

Das *N*-(Trimethylsilyl)borazin **8** zeigt im ¹H-NMR-Spektrum 4 Singuletts im korrekten Intensitätsverhältnis. Relativ zum Hexamethylborazin (δ^1 H 0.47, 2.89) bewirkt die (CH₃)₃Si-Gruppe eine Tieffeldverschiebung der *B*-Methylgruppen um 0.03 ppm und eine Hochfeldverschiebung der CH₃N-Protonen um 0.1 ppm. Das im Vergleich mit anderen Silylaminoboranen ((CH₃)₃Si – NCH₃ – B(CH₃)₂, [(CH₃)₂B]₂NSi(CH₃)₃, (CH₃)₃Si – NCH₃ – BCH₃ – NCH₃ – B(CH₃)₂) tieffeld verschobene (CH₃)₃Si-Protonensignal könnte von der magnetischen Anisotropie des Borazin-Ringes¹⁸ verursacht sein. Bedingt durch Linienbreite und zu erwartende geringe Verschiebungsunterschiede beobachtet man im ¹¹B-NMR-Spektrum von **8** nur ein Signal ($\delta = 38.2$). *Photoelektronenspektren:* In den Verbindungen 2, 3, 11, 12, 14, 18 und 19 liegen *N*-substituierte (Dimethylboryl)amine vor. Sie erlauben es, den Einfluß von Substituenten auf die BN-π-Bindung zu studieren. Dazu werteten wir die He(I)-Photoelektronenspektren qualitativ aus. Der Zustand, der dem BN-π-MO zuzuordnen ist, läßt sich aus Bandenform und -lage leicht ermitteln. (Dimethylamino)dimethylboran ist das geeignete Bezugssystem, dessen höchstes besetztes MO dem BN-π-Orbital (IE 8.92 eV¹⁹⁾) zuzuordnen ist. Wie die Abbildung zeigt, erfährt dieses MO eine Stabilisierung um 0.59 eV durch die Einführung einer (CH₃)₂B-Gruppe. Ersetzt man diese durch den praktisch planaren 1,3-Dimethyl-1,3,2-diazaborolidinyl-Rest, so wird das symmetriegerechte BN-π-Orbital aufgespalten (Δ 0.9 eV), während das HOMO nun ein π-Orbital des BN₂C₂-Fünfringsystems von a₂-Symmetrie ist, dessen Lage sich im Vergleich mit dem 1,2,3-Trimethyl-1,3,2-diazaborolidin praktisch nicht geändert hat.

Abb.: Lage energiereicher PE-Banden von (Dimethylboryl)aminen (CH₃)₂B - N(CH₃)X

Die Substitution der CH₃-Gruppe am exocyclischen Stickstoff durch die (CH₃)₃Si-Gruppe (11) setzt die 1. Bande des PE-Spektrums stärker von vier sich stark überlagernden Banden (9.13 – 10.84 eV) ab. Dabei läßt sich das PE-Spektrum von 11 aus den PE-Spektren von (CH₃)₂B – NCH₃ – Si(CH₃)₃ (12) und 2-Dimethylamino-1,3-dimethyl-1,3,2-diazaborolidin "aufbauen". Danach steht die (CH₃)₂BN[Si(CH₃)₃]-Gruppe praktisch orthogonal zum Fünfring. Vernachlässigt man σ - π -Mischungen, dann wird das HOMO (nichtbindendes π -MO des Fünfringes) kaum induktiv durch die am Ring-B-Atom stehenden Substituenten beeinflußt, und das BNSi- π -Orbital stabilisiert sich nur geringfügig im Vergleich mit 12²⁰⁾. Destabilisiert wird das vollbindende π -Niveau des *B*-dimethylamino-substituierten Diazaborolidins durch die Boryl- und Silylsubstitution, und gleiches gilt für die σ -CNSi- bzw. CBN-Niveaus, ein Hinweis darauf, daß der BN₂C₂-Ring keine elektronenentziehende Funktion ausübt, und ein weiterer Beleg für die orthogonale Stellung der beiden Molekülteile.

Geht man von 12 zu $[(CH_3)_2B - NCH_3]_2Si(CH_3)_2$ über, dann spaltet das BNSi- π -Niveau auf (Δ 0.35 eV)²¹). Zugleich werden σ -Niveaus induktiv destabilisiert. Wie die Abbildung aufzeigt, stabilisiert die (CH₃)₃Si-Gruppe das BN- π -Orbital des (CH₃)₂B - N(CH₃)₂ kaum. Der induktive Effekt der (CH₃)₃Si-Gruppe sollte diesen Zustand energetisch anheben; eine mögliche NSi-(dp) π -Bindung hingegen stabilisieren. Die beiden gegenläufigen Effekte heben sich somit in etwa auf. Der Einfluß der (CH₃)₂P- bzw. (CH₃)₂As-Gruppe spiegelt den induktiven Effekt dieser Gruppen

auf das BN- π -Orbital wider. Dabei ist zu bedenken, daß **18** und **19** im Gegensatz zu $(CH_3)_2B - N(CH_3)_2$ sicher ebenso wie **12** kein planares C_2BNCX -Gerüst besitzen. Eine Verdrillung um die BN-Achse schwächt die BN- π -Bindung, hebt das zugehörige π -MO an. Der +1-Effekt der $(CH_3)_2P$ - bzw. $(CH_3)_2As$ -Gruppe stabilisiert dieses MO; dabei ergibt sich netto sogar eine energetische Stabilisierung (0.12 bzw. 0.31 eV). PN- π - oder AsN- π -Beiträge sind nicht offensichtlich. Die 1. PE-Banden von **18** und **19**²²⁾ entsprechen dem n-Niveau des freien Elektronenpaares am Phosphor bzw. Arsen, wie ein Vergleich mit dem PE-Spektrum von P(CH₃)₃²³⁾ bzw. As(CH₃)₃²⁴⁾ lehrt.

Die aus den PE-Spektren qualitativ abzuleitenden Folgerungen stützen die Interpretation der NMR-Spektren. Rechnungen zur Ermittlung der günstigsten Konformation und zur Geometrieoptimierung sind für eine weitergehende Diskussion erforderlich, desgleichen Strukturbestimmungen mittels Elektronenbeugung²⁵⁾.

Für die Förderung dieser Arbeit gebührt hier herzlicher Dank dem Fonds der Chemischen Industrie, der Deutschen Forschungsgemeinschaft und der BASF-Aktiengesellschaft. Frau D. Ewald, Frau G. Hanatschek, Frau G. Ziegeleder, Frau L. Moser und Herrn K. Schönauer gilt unser Dank für spektroskopische und elementaranalytische Arbeiten.

Experimenteller Teil

Die Feuchtigkeits- und Oxidationsempfindlichkeit der Verbindungen erfordert das Arbeiten im Vakuum oder in einer Inertgasatmosphäre (N₂, Ar). — NMR-Spektren: Varian-A-60A und Varian-HA-100 sowie Bruker-WP 200. — Massenspektren: Varian-CH-7. — He(I)-PE-Spektren: Perkin-Elmer PS 16. — Die Darstellung von $(CH_3)_2BBr, (CH_3)_2N - B(CH_3)Cl, (CH_2NCH_3)_2BCl$ (10), $(CH_3)_2B - NHCH_3$, $(CH_3)_3SiN[B(CH_3)Br]_2$, $CH_3N[Si(CH_3)_2Br]_2$ und $(CH_3)_2B - NCH_3 - Si(CH_3)_2Br$ sowie von 1 und 2 erfolgte nach Literaturvorschriften. Alle übrigen Präparate standen über den Handel zur Verfügung und wurden meist destillativ gereinigt (NMR-Reinheit).

Bis(dimethylboryl)methylamin (2): 3.55 g (50 mmol) (CH₃)₂B-NHCH₃ wurden mit LiC(CH₃)₃ in Ether/Pentan metalliert³) und anschließend das gebildete 1 bei -50° C mit 6.03 g (50 mmol) (CH₃)₂BBr in 20 ml Pentan in 2h unter Rühren umgesetzt. Nach 6h kondensierte man alles Flüchtige i.Vak. in eine -196° C-Falle. Der nichtflüchtige Rückstand wog 4.8 g. Das Kondensat zeigt im ¹H-NMR-Spektrum neben Lösungsmittelsignalen nur Signale von 2 bei $\delta = 2.88$ und 0.56 im Verhältnis 1:4. Nach Einengen des Kondensats bei -50° C auf ≈ 40 ml lieferte die fraktionierende Destillation (Drehbandkolonne) 2.4 g (43%) 2 vom Sdp. 103°C/720 Torr. Zurück blieben 0.9 g Hexamethylborazin, Schmp. 97°C.

Da das an Luft selbstentzündliche 2 bereits charakterisiert ist¹⁰, wurde auf eine Elementaranalyse verzichtet, jedoch die NMR-Daten überprüft, um δ^{13} C- sowie PE-Daten ergänzt und das Massenspektrum aufgenommen. Der Molekülpeak ließ sich nur bei 15 eV beobachten: m/e =111 (¹¹B, korrekte Isotopenmuster). PE: 9.51, 10.71, 11.79, 12.87 eV.

Dimethylamino[(dimethylboryl)methylamino]methylboran (3): 3.10 g (40.3 mmol) 1 in 50 ml Ether wurden unter Rühren bei -40° C in 1 h mit 6.03 g (40.3 mmol) (CH₃)₂N - B(CH₃)Cl in 20 ml Pentan versetzt. Es entstand sofort ein farbloser Niederschlag, dessen Menge sich beim Erwärmen auf Raumtemp. vermehrte. Nach erneutem Abkühlen auf -40° C wurde auf ≈ 30 ml i.Vak. eingeengt, das Unlösliche (3.0 g) abgefrittet und das Filtrat fraktonierend destilliert (Drehbandkolonne). Nach 1.0 g Vorlauf, der $\approx 80\%$ 3 neben 20% Ether enthielt, Sdp. 25 -40° C/ 720 -21 Torr, gingen 2.3 g (41\%) 3 bei 43 -45° C/21 Torr über. Der geringe, feste Rückstand wurde nicht untersucht. - PE: 8.63, 9.11, 10.07, 11.14 eV. - IR (Film): 3000w, 2925st, 2880st, 2850st, 2800st, 1525sch, 1510st, 1455m, 1400st, 1372st, 1305st, 1235st, 1198m, 1155sch, 1140st, 1105m, 1085m, 1055m, 960w, 925w, 875cm⁻¹w.

 $C_6H_{18}B_2N_2$ (139.9) Ber. C 51.53 H 12.97 B 15.46 N 20.03 Gef. C 51.62 H 12.86 B 15.33 N 18.69 Molmasse 140 (MS, korrektes Isotopenmuster)

Pentamethyl-N-(trimethylsilyl)borazin (8): Eine Lösung von 3.0 g (10 mmol) $(CH_3)_3Si - N(BBrCH_3)_2$ (6) in 15 ml Pentan fügte man bei $-40^{\circ}C$ unter Rühren zu 1.54 g (20 mmol) 1 in 20 ml Ether. Nach 24h zeigte das ¹¹B-NMR-Spektrum der Lösung Signale bei $\delta^{11}B$ 38.0 und 58.8 (beide intensiv), ein mittelstarkes bei 86 (BR₃!) und sehr schwache bei 50.7 und 45.1. Die Lösung wurde dann auf ein Viertel des Volumens i.Vak. eingeengt, vom Unlöslichen befreit und das Filtrat bei Raumtemp. umkondensiert. Das Kondensat ($-78^{\circ}C$) zeigte im ¹H-NMR-Spektrum neben Signalen von Ether weitere bei $\delta = 2.88$ (2.2), 0.57 (8.0) (2), 2.80 (1.2), 2.70 (1.0), 0.5, 0.43, 0.37 (zus. 4.4), 0.23 (3.5), 0.16 (2.3), 0.13, 0.08 und 0.05 (zus. 2.5). $\delta^{11}B$: 58.5 (stark, 2), 51.5, 45.8 und 37.7 (alle schwach).

Der nicht flüchtige Rückstand destillierte bei 70°C Badtemp./10⁻³ Torr. Die zähölige Flüssigkeit (1.0 g, 47%) zeigte neben den ¹H-NMR-Signalen von **8** (in CH₂Cl₂: $\delta = 2.79$ NCH₃ (5.33), 0.50 BCH₃ (6), 0.47 BCH₃ (3), 0.24 SiCH₃ (9.2)) noch weitere Signale bei 0.21, 0.19 und 0.09 (zus. 2.0). δ^{11} B (in CH₂Cl₂): 38.2 (nur **8** als borhaltige Spezies). Eine Redestillation erbrachte keinen Reinigungseffekt. — PE: 8.67, 10.40, 12.63 eV.

 $C_8H_{24}B_3N_3Si$ (222.8) Ber. C 43.12 H 10.86 N 18.86 Gef. C 44.4 H 11.96 N 17.62 Molmasse 223 (MS), Verunreinigung N[Si(CH₃)₃]₃ m/e = 233.

2-[(Dimethylboryl)(trimethylsilyl)amino]-1,3-dimethyl-1,3,2-diazaborolidin (11): 7.4 g (10.0 ml, 58 mmol) (CH₃)₂B-NH-Si(CH₃)₃ überführte man mit LiC(CH₃)₃ in Hexan (57.8 mmol) in die N-Lithium-Verbindung³). Nach Kühlen auf -20° C tropfte man 7.67 g (57.9 mmol) 2-Chlor-1,3-dimethyl-1,3,2-diazaborolidin (10) in 20 ml Pentan in 1 h zu. Die entstehende Suspension wurde 1 d gerührt, auf das halbe Volumen i.Vak. eingeengt und das Unlösliche abgefrittet. Das ¹H-NMR-Spektrum des Filtrats wies nur Signale des Lösungsmittels neben denen von 11 auf. Die destillative Aufarbeitung brachte 5.9 g (46 %) 11, Sdp. 37 – 38°C/10⁻² Torr. — PE: 7.52, 9.13, 9.43, 10.08, 10.84 eV. — IR (Film): 2960st, 2890st, 2830st, 2785st, 1505sch, 1497st, 1472m, 1440sch, 1433st, 1405sch, 1400st, 1330sch, 1315st, 1288st, 1272st, 1260st, 1248st, 1215m, 1155m, 1112m, 1065 w, 1025m, 952m, 867m, 838st, 755 w, 682 w, 618 cm⁻¹ w. $C_9H_{25}B_2N_3Si$ (225.0) Ber. C 48.04 H 11.20 B 9.61 N 18.67

Gef. C 47.66 H 11.14 B 9.76 N 19.02

[(Dimethylboryl)methylamino]trimethylsilan (12): Zu 3.0 g (15.5 mmol) (CH₃)₂B – N(CH₃)Li · (CH₃)₂NCH₂CH₂N(CH₃)₂ in 30 ml Ether wurden 1.68 g (15.5 mmol) (CH₃)₃SiCl kondensiert. Aus der gerührten Mischung fiel beim Auftauen ein farbloser Niederschlag aus, der abgetrennt wurde. Nach Einengen des Filtrats ergab die Destillation 1.75 g einer Flüssigkeit vom Sdp. 36° C/ 14 Torr, die gemäß ¹H-NMR-Analyse zu 75% aus 12 und zu 25% aus (CH₃)₂NCH₂CH₂N(CH₃)₂ bestand.

1-Brom-3-[(dimethylboryl)methylamino]-1,1,2,3,3-pentamethyldisilazan (13): Zu 2.89 g (37.4 mmol) 1 in 20 ml Ether fügte man bei -60° C unter Rühren 5.72 g (18.7 mmol) CH₃N[Si(CH₃)₂Br]₂ in 20 ml Pentan. Nach 2h Rühren bei -30° C wurde auf die Hälfte eingeengt (0°C), dann das Unlösliche (3.05 g) nach 3h abgefrittet. Die fraktionierende Destillation lieferte 5.1 g einer farblosen Flüssigkeit, Sdp. $45 - 47^{\circ}$ C/10⁻⁴ Torr, die laut NMR-Spektren zu $\approx 80\%$ aus 13 bestand. Im Rückstand blieben 2 g nichtidentifizierte SiN- bzw. SiNB-Polymere. Die Redestillation des Rohprodukts (Drehbandkolonne) und anschließendes Ausfrieren von 13 erhöhte

den Reinheitsgrad auf $\approx 92\%$ (¹H-NMR). Eine weitere Reinigung gelang nicht²⁶⁾. — δ^{11} B: 52.0, Schulter bei 38. Verunreinigung (15) bei 2.66 NCH₃ (0.7), 0.68 (CH₃)₂Si (1.5), 0.12 BCH₃ (0.3). C₈H₂₄BBrN₂Si₂ (295.2) Ber. B 3.66 Br 27.07 Gef. B 3.0 Br 29.2

Bis[(dimethylboryl)methylamino]dimethylsilan (14): a) Wie vorstehend brachte man 4.5 g (35 mmol) (CH₃)₂SiCl₂ in 20 ml Ether mit 5.53 g (72 mmol) 1 bei -50° C zur Reaktion. Nach 3d bei Raumtemp. wurde filtriert und mit einer Drehbandkolonne fraktionierend destilliert. Beim Sdp. 30-34°C/10[°] Torr gingen 3.5 g (50%) 14 über. 14 zersetzte sich in 3d in siedendem Benzol nicht. — PE: 8.85, 9.20, 10.20, 11.31 eV.

 $C_8 H_{24} B_2 N_2 Si \ (198.0) \quad Ber. \ C \ 48.53 \ H \ 12.22 \ B \ 10.92 \ N \ 14.15 \\ Gef. \ C \ 48.16 \ H \ 12.67 \ B \ 10.49 \ N \ 13.84$

b) Auf 2.24 g (11.6 mmol) $1 \cdot (CH_{3})_2 NCH_2 CH_2 N(CH_{3})_2$ in 20 ml Ether kondensierte man 2.42 g (11.6 mmol) $(CH_{3})_2 B - NCH_3 - Si(CH_{3})_2 Br$. Nach Auftauen und Reaktion bei Raumtemp. frittete man Unlösliches ab, engte i.Vak. ein und destillierte. Ausb. 0.45 g (20%) 14 vom Sdp. $30^{\circ}C/10^{-2}$ Torr.

[(Dimethylboryl)methylamino]dimethylphosphan (18): 3.85 g (50 mmol) 1 in 30 ml Ether und 70 ml Petrolether wurden bei -40° C in 2h mit 4.07 g (42.2 mmol) (CH₃)₂PCl in 25 ml Pentan versetzt. Nach 2h Auftauen auf Raumtemp. engte man auf 15 ml ein, filtrierte vom Unlöslichen (2.2 g) ab und destillierte das Filtrat mit einer Drehbandkolonne. Die Fraktion bei 73°C/15 Torr (3.1 g) lieferte bei der Redestillaton, Sdp. 55°C/2·10⁻² Torr, 1.43 g (25.9%) reines 18, Schmp. $\approx 15^{\circ}$ C. Der Destillationsrückstand erwies sich NMR-spektroskopisch als Hexamethylborazin.

Das Produkt stimmte gemäß ¹H-, ³¹P- und ¹¹B-NMR-Spektrum mit einem authentischen Präparat überein¹²⁾.

[(Dimethylboryl)methylamino]dimethylarsan (19): 3.85 g (50 mmol) 1 (in ≈ 150 ml Ether/ Pentan) wurden bei -40° C mit 7.0 g (50 mmol) (CH₃)₂AsCl in 30 ml Ether umgesetzt. Nach mehreren h bei Raumtemp. wurden nach Abfritten vom Unlöslichen durch Destillation 5.41 g (66%) 19 vom Sdp. 76°C/4 Torr erhalten. 19 ist sehr feuchtigkeitsempfindlich. — PE: 8.67, 9.05, 10.15, 11.20 eV. — IR (Film): 2975st, 2920st, 2905st, 1432st, 1355sch, 1340sst, 1302st, 1250w, 1170sch, 1155m, 1097st, 1045m, 925w, 890sch, 878m, 825m, 805w, 730 cm⁻¹w.

> C₅H₁₅AsBN (174.9) Ber. C 34.33 H 8.64 B 6.18 N 8.01 Gef. C 35.47 H 8.42 B 5.98 N 8.46 Molmasse 175 (MS, bez. auf ¹¹B)

Literatur

- ¹⁾ CIV. Mitteil.: H. Nöth, H. Fußstetter, H. Pommerening und T. Taeger, Chem. Ber. 113, 342 (1980).
- ²⁾ H. Fußstetter, Dissertation, Univ. München 1977.
- ³⁾ H. Fußstetter und H. Nöth, Chem. Ber. 111, 3596 (1978); H. Fußstetter, R. Kroll und H. Nöth, 110, 3829 (1977).
- ⁴⁾ H. Nöth, Progr. Boron Chem. 3, 211 (1970); K. Barlos und H. Nöth, Chem. Ber. 110, 2790 (1977), und dort zit. Lit.
- ^{5) Sa)} W. Storch, W. Jaksties, H. Nöth und G. Winter, Angew. Chem. **89**, 494 (1977); Angew. Chem., Int. Ed. Engl. **16**, 478 (1977). ^{5b)} H. Nöth und W. Storch, Chem. Ber. **110**, 2607 (1977).
- ⁶⁾ S. Lukas, Dissertation, Univ. München 1962; H. Nöth und H. Vahrenkamp, J. Organomet. Chem. 16, 357 (1969).
- ⁷⁾ M. J. S. Dewar und P. M. Maitlis, J. Am. Chem. Soc. 83, 187 (1961); R. J. Wagner und J. L. Bradford, Inorg. Chem. 1, 99 (1962); I. Geisler und H. Nöth, Chem. Ber. 106, 1943 (1973); H. Nöth und G. Abeler, ebenda 101, 969 (1968); P. Fritz, K. Niedenzu und J. W. Dawson, Inorg. Chem. 4, 886 (1965).

- ⁸⁾ Gmelin, Handbuch der Anorganischen Chemie, Ergänzungswerk zur 8. Aufl., Bd. 22, S. 282, Springer, Berlin 1975.
- ⁹⁾ Diese Beobachtung bestätigt Vermutungen, daß die unter Lewis-sauren Bedingungen über die Silazan-Spaltung erhaltenen peralkylierten Diborylamine durch saure Verunreinigungen katalytisch zersetzt werden, vgl. auch Lit¹⁰.
- ¹⁰⁾ H. Nöth und H. Vahrenkamp, J. Organomet. Chem. 16, 357 (1969).
- ¹¹⁾ Diesen Vergleich führen wir in einer eigenen Arbeit aus.
- ¹²⁾ H. Nöth und W. Storch, Chem. Ber. 110, 1636 (1977).
- 13) Lit.⁸⁾, S. 23, 80, 128.
- 14) R. Goetze und H. Nöth, Z. Naturforsch. Teil B, 30, 875 (1975).
- ¹⁵⁾ H. Nöth und B. Wrackmeyer, NMR-Basic Principles and Progress, NMR of Boron Compounds, Herausgeber: P. Diehl, E. Fluck und R. Kosfeld, Springer Verlag, Berlin 1978.
- ¹⁶ W. McFarlane, B. Wrackmeyer und H. Nöth, Chem. Ber. 108, 3831 (1975).
 ¹⁷ Ausführlichere Untersuchungen zur Rotationshinderung werden wir in Lit.¹¹ diskutieren.
- ¹⁸⁾ H. Vahrenkamp, Dissertation, Univ. München 1967.
- ¹⁹⁾ H. Bock und W. Fuβ, Chem. Ber. 104, 1687 (1971).
- ²⁰⁾ Wahrscheinlich ist die Konformation und Geometrie an dem vergleichbaren N-Atom von 11 und 12 verschieden.
- ²¹⁾ Für diese Aufspaltung kann man eine geringe NSiN-π-Wechselwirkung diskutieren, die aus einer \pm -Kombination der BN-Orbitale mit einer \pm -Kombination geeigneter Si(d)-Orbitale hervorgeht.
- ²²⁾ J. Kroner, Habilitationsschrift, Univ. München 1976.
- ²³⁾ M.F. Lappert, J.B. Pedley, B.T. Wilkins, O. Stelzer und E. Unger, J. Chem. Soc., Dalton Trans. 1975, 1207.
- 24) S. Elbel, H. Bergmann und W. Ensslin, J. Chem. Soc., Faraday Trans. 2 70, 555 (1974).
- ²⁵⁾ Entsprechende Untersuchungen von G. Gundersen, Univ. Oslo.
- ²⁶⁾ Weitere Versuche: siehe Dissertation H. Fußstetter, Univ. München 1977²⁾.

[171/79]